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Large-order behaviour of the 1/N expansion in zero and one 
dimensions 

S Hikamit and E BrCzin 
Division de la Physique, CEN Saclay, 91 190 Gif-sur-Yvette, France 

Received 8 September 1978 

Abstract. The large-order behaviour of the l / N  expansion in the zero- and one-dimen- 
sional gd4 model is investigated. The one-dimensional N-vector model is also considered. 
The asymptotic behaviour shows oscillations due to complex instantons. The phase and the 
amplitude of these leading behaviours are determined theoretically and are compared with 
the explicit numerical calculations of higher orders. In the one-dimensional gd4 model the 
relevance of the large-N instanton is discussed. 

1. Introduction 

Recent studies of the perturbation expansion in the gq54 model have led to the 
understanding that the instanton (or pseudo-particle) solution of the classical equations 
of motion characterises the large-order behaviour (Lam 1968, Lipatov 1977, Brtzin et 
a1 1977, BrCzin and Parisi 1978). The method may be applied to various problems in 
field theories, for the Landau-Ginzburg-Wilson model, or for quantum mechanical 
problems like the one-dimensional anharmonic oscillator (Bender and Wu 1969). 

In critical phenomena calculations, in addition to similar coupling constant or 
€-expansions one also uses the 1/N expansion, in which N is the number of 
components of the order parameter. Several terms of this expansion for the critical 
exponents have been determined (Abe 1973); however, up to now, the nature of this 
expansion remains unknown. 

In this paper we consider the 1/N expansion in the zero- and one-dimensional gqh4 
model and also in the one-dimensional classical N-vector model. The general nature of 
this expansion in low dimensions may hold even in higher dimensions. Thanks to the 
smallness of space dimensionality, we have many methods to calculate the large-order 
behaviour. In the zero-dimensional gd4 model we derive the expression for the large 
orders from an integral representation and from a differential equation. Previously, 
zero-and one-dimensional gd4 models were considered in the 1/N expansion (Bray 
1974a,b, Ferrell and Scalapino 1974), and a few terms were obtained. However, the 
large-order behaviour has not so far been investigated. We explicitly calculate the first 
60 terms, and check that they agree with the theoretical asymptotic estimate. 

In the one-dimensional N-vector model, the exact expression for the partition 
function is known. The large-order behaviour of the 1/N expansion for this solution 
may be related to the large-index behaviour of modified Bessel functions. 

t On leave of absence from RIFP, Kyoto University, Japan. 
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In the one-dimensional gr44 model we consider the equivalent quantum mechanical 
ground state energy problem. The 1/N expansion may then be related to a coupling 
constant expansion for a potential problem, but the potential is singular. However, 
there is an instanton solution for small negative coupling. Making analytic continuation 
of this large-order term, we obtain the large order behaviour for the positive-coupling 
case. Numerically we obtain the first 50 terms in the 1/N expansion. 

2. Zero-dimensional g44 model 

2.1 1 / N expansion 

Counting the number of diagrams of a given expansion may be viewed as a field theory 
in which each propagator is set equal to unity. It thus corresponds to a theory in which 
space-time is reduced to one or to a finite number of points, i.e. a ‘zero-dimensional’ 
field theory. The counting of the diagrams of the perturbative expansion of the 
N-component gr,b4 theory leads to the N-dimensional integral 

and after integration over the angles to 

This function I(g, N) is the generating function of the vacuum diagrams’ counting. 
Expanded in powers of 1/N it leads to the number of modified vacuum diagrams which 
appear in the rules of the 1/N expansion (Ma 1976). By the change of variable 

f / 2  e we get the expression 

where 
1 F ( t )  = 4 e‘ + g ezr -2t. 

The 1/N expansion is obtained by expandin the expo 

(2.3) 

(2.4) 

ent of equation (2.3) around its 
saddle point. The saddle point t, is obtained as one of the solutions of 

F’(t,)=$efc+2g eZfc-f=o. (2.5) 

The leading saddle point is the only real solution of this equation: 

There are other solutions, and for later convenience we note 

(2.6) 

1 + (1 + 16g)’” 
t i  =log f i7r. 

8g (2.7) 
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Expanding F( t )  in equation (2.4) around tA we obtain the 1/N expansion series 

with 
-1+(1+16g) ' I2  1 1 (1+16g)'/2-1 +---In 

32g 4 2  8g 
F ( f A )  = 

2.2. Calculation of the large-order term 

From the explicit integral representation (2.3) it is easy to calculate the large-order 
behaviour of the AK7s in equation (2.8). Performing the change of variable 

F(t)-F(t,) = f 2  (2.10) 

we are led to an integral of the type 
00 

J = I e-"'(") df. 
-m df 

(2.11) 

The 1/N expansion of J is generated by expanding dtldf around f = 0. The large-order 
behaviour of this expansion is related to the saddle points t i ,  which are singularities 
of dt/df. We expand the quantity f around these f g  as 

f = f ( t B ) f ~ f " ( f B ) ( t - f B ) 2 + . *  

and we get 

f - f B  I: (2/f"(tB)>'l2(f- f(tB)) ' /2.  (2.12) 

Thus the singular part in (2.11) is written as. 

dt/df = $(2/f"(t~4))'/~(f- f(tB))-'/2. (2.13) 

Putting this equation into (2.11) we have 

The quantity f2(tB) is 

(1 + 16g)'" 1 (1 + 16g)'/'+ 1 T 
16g 2 (1+16g)'/2-1*2i 

--In (n = 1 , 2 , .  . .) f 2 ( t B ) = F ( f B ) - F ( f A ) =  - 

(2.15) 
We thus obtain the large-order behaviour of (2.8) as 

sin OK (1+16g)'/'--l r(K+t)K-l /2  
A"--( 77 (16g)"* )T , 

with 

(2.16) 

(1 + 16g)'I2 1 (1 + 1 6g)'I2 + 1 z = -  ' --In 
16g 2 (1+16g)'/'-l ' (2.17) 
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From (2.17) the quantity p takes the value 7r/2 in the limit g + CO. This result is checked 
by the 1 / J g  expansion 

KN14. 
r( N/4) N N’4 

2”’+ ’ (N/ 2) 
z= 

The large-order behaviour of the I‘ function is given by 

( K - l ) !  1 7r - - sin - K, 
(27rzy  7r 2 

In r(Z) 2: 

(2.18) 

(2.19) 

and this checks that (2.18) coincides with (2.16) in the infinite limit. 
The large-order behaviour of the zero-dimensional gd4  model is also calculated by 

the differential equation of the parabolic cylinder function. We have (Balian and 
Toulouse 1974) 

(2.20) 

where the parabolic cylinder functions U(a,  x )  satisfy the differential equation 

d2U/dx2= (:x2+a)U. (2.21) 

For the large-a and large-x2 case we obtain 

The integral of the exponents leads to 

(1+16g)’” 1 (1+16g)’ /2+1 7r. 
f-1. 

4 
+-ln 

1 ( N / 8  g ) * I ( a  + i t 2 ) 1 / 2  dt = 
+ ~ i J a  3% 2 4 Jg 

(2.22) 

(2.23) 

Multiplying expression (2.23) by two we find the large-order behaviour (Dingle 1973), 
which coincides with expression (2.17). 

As discussed by Bray (1974), it is convenient to consider the entropy instead of the 
partition function itself in order to obtain the numerical values of the perturbation. 
Denoting f as 

t = 1 / 2 4  (2.24) 

the entropy S is written as 

S = - (2/N) d(l n Z)/dt .  (2.25) 

It is easily shown that the quantity S satisfies the equation 

S2 + tS = 1 + (2/N) dS/dt. 

In the limit N + 03 we have 

so = [ ( r 2  + 4I1l2 - t]/2. 

(2.26) 

(2.27) 
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S is expanded as 

This expansion is determined by the recurrence equation 

The term Cm is given by 

763 

(2.28) 

(2.29) 

(2.30) 

Solving the recurrence equation we obtained the first 60 terms for Cm on a CDC6499 
computer. The values of p and 8 in (2.17) are numerically verified. 

2.3. Small-g behaviour (see appendix 1) 

The small-g expansion in our zero-dimensional model is calculated as 

(2.31) 

The value of - 16g/N is consistent with our previous result. For the small-g case we 
can expand p in (2.17) as 

p=(1+16g)”2/16g-$ln g + O ( l )  

6 = O+O(g). 

(2.32) 

(2.33) 

This behaviour of p is consistent with the result of the small-g expansion for fixed N. 

3. N-vector model 

In this section we investigate the one-dimensional problem, for which the exact solution 
is known. The model describes the N-component spin system, with fixed spin length. 
Therefore the model is very similar to the nonlinear u model except that the spins are 
placed on a discrete linear chain. The Hamiltonian is given by 

%= --JCSi.SiCl 
i 

and 

(3.1) 

The partition function for the one-dimensional N-vector model containing an arbitrary 
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number M of spins is easily derived (Stanley 1969) as 

(3.3) 

where I is a modified Bessel function. The large-order behaviour in the 1/N expansion 
comes mainly from the modified Bessel function. In equation (3.3) there is a function. 
We know the large-order terms from this I' function from equation (2.19). However, 
these terms are cancelled, as we will discuss below, by the behaviour of the modified 
Bessel function equation (3.4). 

We consider the modified Bessel function I,(vZ). The case with v = N/2 and 
2 = 2J/kT is slightly different from equation (3.3). However, the difference is of the 
order 1/N, and the large-order behaviour is not affected by this replacement. The 
modified Bessel function has the integral representation 

I ,(vZ)= - ($)"4' e-"ZS(v. Z),  
+f) 

(3.4) 

with 
OD 

S ( v  . 2) = lo1 (U - u ~ ) " - ' / ~  e2u"z du = lo erF(r) dt, 

where 

F ( t )  = (v + 3)t + (v - 4) In(1- e-? + 2 vz e-'. (3.5) 

In the large-v limit we have the saddle point equation 

dF(t)/dt = 0. (3.6) 
We have two saddle points fA and t B  which are given by the equations 

[Z - 1 + (1 + Z2)'/*3/22, e-b = [Z - 1 - (1 + Z~) ' ' ~ ] /~Z .  (3.7) e-'A 

fA has a real solution, and t~ is a complex number. By the same argument as in § 2.2 we 
have 

where the amplitude p is given by 

and the phase 6 is 

( l+Z2)l l2- l  +(1 +z2)'/2)p-' 
Z 

e = c0s-l (In 

Therefore we have large-order behaviour at Kth order: 
ZK/NK cc (K - l ) !  sin BK/p K K  N . 

From equation (3.4) we can easily derive the 1/N expansion as 

(3.10) 

(3.11) 

(3.12) 
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with 
1 (1 +z2p2- 1 

77 = (1 + z2)'/' + In Z (1 + z 2 p 2 ,  
t =  

The terms U k ( t )  are determined by (Abramovitz) 

k = 0 ,  1 ,2 , .  . .. uk+l(t)  =b t2 ( l  - f  2 

Writing u k  ( t )  as 

we have the following recursion equation for C(k, j ) ,  

k + 2 j - 3  k+2j -5  + )C(k  - 1, j ) aA-  C(k - 1, j -  1)SB 
2 C(k , j )=(  8(k + 2j - 2) 

C(k  - 1, j -  l)SB, U =  1,.  . . , k + l ) ,  5 
8(k + 2j - 2) 

- 

(3.13) 

(3.14) 

with 

We calculated the first 60 terms for u k  for the various values of Z = 2J/kT. Our 
theoretical value of equation (3.11) agrees well. We also observe for small Z ( C 0.02) 
the large-order behaviour of U k ( t )  which shows the inverse behaviour of r(N/2) at 
large-order, and formula (3.11) holds for all positive values of 2. 

It is interesting to consider the analytic continuation for Z + i Z  (the value of t can be 
continued to a value greater than one). This procedure transforms the modified Bessel 
function into the ordinary Bessel function J,(vZ). However, the large-order behaviour 
of the 1/N expansion for J,(vZ) is given by exactly the same recursion relation as 
equation (3.13) and (3.14), and it is easily found that the large-order behaviour 
becomes 

(3.15) 

+m. - (1 --z2y2+ 1 
2 

6 = In 

For 2 = 2J/kT large, the p in (3.7) can be expanded as 

pCcZ+(7r2/4- 1) / (22)+0(1/Z2) ,  e oc .rr2/2z + o(i/z2). (3.16) 
In the limit of infinite Z, the signs of the terms become the same. Therefore the series of 
the 1/N expansion seems to bc non-Bore1 summable in the large-Z limit. This is 
related to the low-temperature expansion for the N-vector model. The modified Bessel 
function in (3.3) leads to 

(3.17) 
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The large-order behaviour of this low-temperature expansion does not show sign 
alternation. 

4. One-dimensional g44 model 

4.1. 1/N expansion 

The one-dimensional g 4 4  model is known to be equivalent for general values of N to 
the x4 anharmonic oscillator (Balian and Toulouse 1974, Ferrell and Scalapino 1974). 

Therefore is it convenient to consider the following quantum mechanical pertur- 
bation theory to obtain the 1/N expansion series: 

Making the change of variables 

(I, = r - (N-1 ) /2  47 r = f i p ,  E = E N  
we have 

+ - N 2 p 2 + g N 2 p 4 - ~ N 2  
1 d2 N2(1 - l / N ) ( 1 - 3 / N )  1 

8 P 2  2 

In the large-N limit the energy is given by 

E O =  l / S p , 2  +p:/2+gp:. 

V ( p )  = 1/8p2+p2/2+gp4-Eo 

The saddle point pc is determined by 

d V ’ ( p , ) / d p  = 0. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The 1/N expansion for the ground-state energy is obtained by expanding the wave- 
function around this saddle point. It is very convenient to transform the Schrodinger 
equation into a Riccati equation for numerical calculations: 

U = 4{/4, p = pc+ x/ fi (4.7) 
[ - $ u ’ - ~ u ~ +  N V ( p )  + ( -i+iN-’)p-2]c$ = N ( E  -E=)+. (4.8) 

The wavefunction U and the ground-state energy E are written as 

(4.9) 

(4.10) 

€1 = -zC(1, 1 1)-$p;2,  € 2  = - iC(3,  2)+ipi2,  E k  = -4C(2k - 1 ,  k ) .  
(4.1 1 )  

For the case where the coupling constant vanishes, we have the exact wavefunction. The 
wavefunction (I, and the ground -state energy E are written as 

cl/(r) = E = N/2,  (4.12) 
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and 4 ( y )  becomes 

(4.13) 

The saddle point ps is 1/&. Expanding the exponent of 4 around ps we obtain 
- 

Performing the numerical calculation for the ground-state energy we can obtain the 
asymptotic 1/N series. Making the truncation at the value where the absolute values of 
the terms become minimum we estimate the ground-state energy. For N = 1 the value 
of the ground-state energy has been investigated in detail by Hioe and Montroll(l975) 
and Seznec and Zinn-Justin (1978, private communication). For N = 3 the value of the 
first-excited-state energy of the N = 1 problem, since the singular part of the potential 
in (4.3) vanishes for N = 3 (tables 1 and 2). 

Table 1. One-dimensional g44 model; the value of the ground-state energy is estimated by 
taking the partial sum of the 1 /N expansion Z 2 0  cn(1/N)"-'. 

k? K, N = l  (N = 1)t  N = 3  ( N  = 3)$ 

0.01 (13) 0.507 256 20 (0.507 256 20) 1.512 279 4 
0.05 (11) 0,532 649 39 (0.532 642 75) 1,557 667 3 
0.1 (8) 0,55882 (0.559 14) 1.608 082 5 
0.5 (6) 0,697469 (0.696 17) 1.895 52 (1.895 507) 
1 .o (5) 0.805 583 (0.803 77) 2.137 34 (2.137 387) 
1000 (4) 6.83200 (6.6942) 16.667 

t Hioe and Montroll (1975). 
t Seznec and Zinn-Justin (1978, private communication; from the first excitation value of 
g =a ,  3). 

1 1  

Table 2. The first column is the value of the partial sum of g = 0 , 1  in the 1 /N expansion. 
The second column is the value of the small-g (g = 0.1) expansion (Bender and Wu 1969). 

1 0.5643456 1 0.575 
2 0.5574448 2 0.548 75 
3 0.5599668 3 0.569 562 5 
4 0,5586376 4 0.545 433 
5 0,5595253 5 0.581 243 
6 0,5588206 6 0.517 260 
7 0.5594580 7 0.650 234 
8 0.5588234 8 0.335 752 
9 0.5594938 9 1.169 29 

10 0.5587812 10 - 1.278 60 
11 0,5594598 11 6,614 73 
12 0,5591365 12 -21.1240 
13 0.5580632 13 84,440 6 
14 0.5636639 14 -348.24 
15 0.5443774 15 1552.58 
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4.2. Instanton 

When the coupling constant g is small and negative, there appears a real turning point xt 
in the potential of equation (4.5). It leads to the instanton solution which connects the 
saddle point to the turning point, and we have K !  large-order behaviour for the 1/N 
expansion. 

To consider the large-order behaviour we make the following change of variables: 

(4.15) NI2 = (N  - 1)(N - 3), g f N  = g’/N’. 

The potential in (4.3), which is expanded around xc, turns out to be 

V(x)=~x-2+tX2+grx4-Eg.  (4.16) 

The large-order behaviour is calculated by the method which has been developed for 
the boson polynomial Lagrangian in one dimension (BrCzin et a1 1977): 

E K ~ ( K  - l ) ! ~ - ~  

(4.17) 

in which we have normalised 

v to P (x )  = V(2)/ V”(XC). 

The turning point xt  is given by 

(4.18) xt  2 = - 2 ~ :  -1/2g’= -1/8g’xC. 4 

For the small-g limit we have 

p = -(1/3g’)(l +3g’)”2+$1n(-g’/4). (4.19) 

The value of - 1/3g‘ is consistent with the result of the small-g expansion (Appendix 2). 
For g’ positive we consider the large-order behaviour which is obtained by the 

analytic continuation of (4.17). In this case the turning point xt becomes complex. A 
simple example of complex instanton has been investigated by BrCzin et a1 (1977). The 
p is written as 

p = A ei‘ 

where 

A = [ Z 2  + ( ~ / 2 ) ~ ] ’ / ~ ,  0 = cos-’(Z/A), (4.20) 

1 1  ‘ I 2  ( 1 / 8 g + ~ , 6 ) ’ / ~ - ( 1 / 8 g ) ’ / ~  
2 = --(--,+8gx:) 6g xc +In X C  3 

For the large-g’ limit the ground-state energy behaves due to the trivial scaling as 

E - Cg1l3. (4.21) 
The value of C is known to be 0.667 986 for N = 1 and 1,659 66 for N = 3. In our 1/N 
expansion we have 

E = (0.472 47)Ng1l3+0*283 16 g”3 +.  . .. (4.22) 
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This expansion is asymptotic, and the value of p is In(&’+ h) f $Ti. In the problem of 
the planar diagram, another 1 / N  expansion has been considered for the large-g limit by 
BrCzin et a1 (1978). 

The amplitude of the large-order behaviour may be derived as 

where the potential QR is normalised as ty’ for small-y limit. We have from (4.23) 

(4.24) 

The effect of the difference of N ’  and N in (4.15) for the large-order behaviour is 
considered as follows: the large-order behaviour is described as 

(4 .25)  

Therefore the quantities A and 6 in (4.24) are not affected. The first 50 terms for the 
ground-state energy for arbitrary g was calculated numerically on a CDC6400 
computer, and the values of A and 6 were verified. 
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Appendix 1 

The small-g expansion in the zero-dimensional g44  model is given as 

T ( k + N / 4 )  T ( k + + + N / 4 )  
I n I = l n  I +  1 [ k = i  r(k + 1 )  r ( N / 4 ) r ( $ +  N / 4 )  

= N ( N  + 2 ) ( g / N )  + 4 N ( N  + 2)(N + 3)(g /N)’  

- $ N ( N  + 2)(40N2 + 287N + 4 8 0 ) ( g / N ) 3  + . . . .. 
The large-order behaviour of this expansion becomes 

( A l . l )  

2N/2-1 
r(k ++I( F ) k k N / 2 - 1 (  + N ( N  - 2 )  +. . .). (A1.2)  ( l r ~ I ) ~ = -  - -- 

4, r ( N / 2 )  16k 
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Appendix 2 

We represent here the result of the small-g expansion for the one-dimensional 
model with O ( N )  symmetry. The ground-state energy is calculated as 

(A2.1) 

Denoting U = $ I / $  we obtain 

(A2.2) 1 - z u ‘ - $ u ~ - [ ( N  - 1 ) / 2 ~ ] ~  ++x’+  ( g / N ) x 4 =  E. 

The function U ( X )  is written as 
00 k + l  k 

U ( X )  = - 1 C ( k  + 1, M)(-$ X 2 k - 2 M + 1  
k = O M = l  

and E is given by 
“ N  k 

E =  k = O  - C ( k + l , k + l ) ( K )  2 N 

N + N ( N + 2 )  g N 2 - _  - (-) - x(N + 2)(2N + 5 ) (  8) 2 4 N  

N(N + 2)(8N2 + 43N + 60) g + (F) +.... 
16 

(A2.3) 

(A2.4) 

The asymptotic large-order behaviour of the ground-state energy E is given by (Banks 
et a1 1973) 

m k 

E =  c ai.($) 
k = O  

(A2.5) 

(A2.6) 
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